Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Adv ; 7(43): eabj3107, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1476372

ABSTRACT

Vaccines that induce potent neutralizing antibody (NAb) responses against emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential for combating the coronavirus disease 2019 (COVID-19) pandemic. We demonstrated that mouse plasma induced by self-assembling protein nanoparticles (SApNPs) that present 20 rationally designed S2GΔHR2 spikes of the ancestral Wuhan-Hu-1 strain can neutralize the B.1.1.7, B.1.351, P.1, and B.1.617 variants with comparable potency. The adjuvant effect on vaccine-induced immunity was investigated by testing 16 formulations for the multilayered I3-01v9 SApNP. Using single-cell sorting, monoclonal antibodies (mAbs) with diverse neutralization breadth and potency were isolated from mice immunized with the receptor binding domain (RBD), S2GΔHR2 spike, and SApNP vaccines. The mechanism of vaccine-induced immunity was examined in the mouse model. Compared with the soluble spike, the I3-01v9 SApNP showed sixfold longer retention, fourfold greater presentation on follicular dendritic cell dendrites, and fivefold stronger germinal center reactions in lymph node follicles.

2.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: covidwho-1142982

ABSTRACT

Vaccination against SARS-CoV-2 provides an effective tool to combat the COVID-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system. We then identified heptad repeat 2 (HR2) in S2 as the cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2GΔHR2), and displayed S2GΔHR2 on SApNPs. An antibody column specific for the RBD enabled tag-free vaccine purification. In mice, the 24-meric RBD-ferritin SApNP elicited a more potent neutralizing antibody (NAb) response than the RBD alone and the spike with two stabilizing proline mutations in S2 (S2P). S2GΔHR2 elicited twofold higher NAb titers than S2P, while S2GΔHR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2GΔHR2-presenting I3-01v9 SApNP also induced critically needed T cell immunity, thereby providing a promising vaccine candidate.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/pharmacology
3.
bioRxiv ; 2021 Apr 05.
Article in English | MEDLINE | ID: covidwho-809009

ABSTRACT

Vaccination against SARS-CoV-2 provides an effective tool to combat the COIVD-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system. We then identified heptad repeat 2 (HR2) in S2 as the cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2GΔHR2), and displayed S2GΔHR2 on SApNPs. An antibody column specific for the RBD enabled tag-free vaccine purification. In mice, the 24-meric RBD-ferritin SApNP elicited a more potent neutralizing antibody (NAb) response than the RBD alone and the spike with two stabilizing proline mutations in S2 (S2P). S2GΔHR2 elicited two-fold-higher NAb titers than S2P, while S2GΔHR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2GΔHR2-presenting I3-01v9 SApNP also induced critically needed T-cell immunity, thereby providing a promising vaccine candidate.

SELECTION OF CITATIONS
SEARCH DETAIL